Answer:
Option B
Explanation:
$E(t)= A^{2}e^{-\alpha t},$ ...........(i)
$\alpha=$ 0.2 s-1
$\left(\frac{dA}{A}\right)\times 100=$ 1.25%
$\left(\frac{dt}{t}\right)\times 100=$ 1.50
$\Rightarrow$ $(dt\times100)=1.5t=1.5\times5=7.5$
$\therefore$ $\left(\frac{dE}{E}\right)\times100=\pm 2\left(\frac{dA}{A}\right)\times100$
$\pm\alpha(dt\times100)$
Taking log on both sides of Eq.(i), we get
$\log E=2\log A-\alpha t$
$\frac{dE}{E}= 2\frac{dA}{A}\pm\alpha dt$
$\therefore$ $\left(\frac{dE}{E}\right)\times 100=\pm 2\left(\frac{dA}{A}\right)\times100\pm\alpha(dt \times 100)$
$=\pm 2(1.25)\pm 0.2(7.5)$
$=\pm 2.5\pm1.5=\pm4$%